skip to content

Department of Physics

The Cavendish Laboratory
 
Subscribe to Physics News feed
News from the Cavendish Laboratory.
Updated: 13 min 39 sec ago

Switching ‘spin’ on and off (and up and down) in quantum materials at room temperature

Wed, 16/08/2023 - 16:00

Spin is the term for the intrinsic angular momentum of electrons, which is referred to as up or down. Using the up/down spin states of electrons instead of the 0 and 1 in conventional computer logic could transform the way in which computers process information. And sensors based on quantum principles could vastly improve our abilities to measure and study the world around us.

An international team of researchers, led by the University of Cambridge, has found a way to use particles of light as a ‘switch’ that can connect and control the spin of electrons, making them behave like tiny magnets that could be used for quantum applications.

The researchers designed modular molecular units connected by tiny ‘bridges’. Shining a light on these bridges allowed electrons on opposite ends of the structure to connect to each other by aligning their spin states. Even after the bridge was removed, the electrons stayed connected through their aligned spins.

This level of control over quantum properties can normally only be achieved at ultra-low temperatures. However, the Cambridge-led team has been able to control the quantum behaviour of these materials at room temperature, which opens up a new world of potential quantum applications by reliably coupling spins to photons. The results are reported in the journal Nature.

Almost all types of quantum technology – based on the strange behaviour of particles at the subatomic level – involve spin. As they move, electrons usually form stable pairs, with one electron spin up and one spin down. However, it is possible to make molecules with unpaired electrons, called radicals. Most radicals are very reactive, but with careful design of the molecule, they can be made chemically stable.

“These unpaired spins change the rules for what happens when a photon is absorbed and electrons are moved up to a higher energy level,” said first author Sebastian Gorgon, from Cambridge’s Cavendish Laboratory. “We’ve been working with systems where there is one net spin, which makes them good for light emission and making LEDs.”

Gorgon is a member of Professor Sir Richard Friend’s research group, where they have been studying radicals in organic semiconductors for light generation, and identified a stable and bright family of materials a few years ago. These materials can beat the best conventional OLEDs for red light generation.

“Using tricks developed by different fields was important,” said Dr Emrys Evans from Swansea University, who co-led the research. “The team has significant expertise from a number of areas in physics and chemistry, such as the spin properties of electrons and how to make organic semiconductors work in LEDs. This was critical for knowing how to prepare and study these molecules in the solid state, enabling our demonstration of quantum effects at room temperature.”

Organic semiconductors are the current state-of-the-art for lighting and commercial displays, and they could be a more sustainable alternative to silicon for solar cells. However, they have not yet been widely studied for quantum applications, such as quantum computing or quantum sensing.

“We’ve now taken the next big step and linked the optical and magnetic properties of radicals in an organic semiconductor,” said Gorgon. “These new materials hold great promise for completely new applications, since we’ve been able to remove the need for ultra-cold temperatures.”

“Knowing what electron spins are doing, let alone controlling them, is not straightforward, especially at room temperature,” said Friend, who co-led the research. “But if we can control the spins, we can build some interesting and useful quantum objects.”

The researchers designed a new family of materials by first determining how they wanted the electron spins to behave. Using this bottom-up approach, they were able to control the properties of the end material by using a building block method and changing the ‘bridges’ between different modules of the molecule. These bridges were made of anthracene, a type of hydrocarbon.

For their ‘mix-and-match’ molecules, the researchers attached a bright light-emitting radical to an anthracene molecule. After a photon of light is absorbed by the radical, the excitation spreads out onto the neighbouring anthracene, causing three electrons to start spinning in the same way. When a further radical group is attached to the other side of the anthracene molecules, its electron is also coupled, bringing four electrons to spin in the same direction. 

“In this example, we can switch on the interaction between two electrons on opposite ends of the molecule by aligning electron spins on the bridge absorbing a photon of light,” said Gorgon. “After relaxing back, the distant electrons remember they were together even after the bridge is gone.

“In these materials we’ve designed, absorbing a photon is like turning a switch on. The fact that we can start to control these quantum objects by reliably coupling spins at room temperature could open up far more flexibility in the world of quantum technologies. There’s a huge potential here to go in lots of new directions.”

“People have spent years trying to get spins to reliably talk to each other, but by starting instead with what we want the spins to do and then the chemists can design a molecule around that, we’ve been able to get the spins to align,” said Friend. “It’s like we’ve hit the Goldilocks zone where we can tune the spin coupling between the building blocks of extended molecules.”

The advance was made possible through a large international collaboration – the materials were made in China, experiments were done in Cambridge, Oxford and Germany, and theory work was done in Belgium and Spain.

The research was supported in part by the European Research Council, the European Union, the Engineering and Physical Sciences Research Council (EPSRC), part of UK Research and Innovation (UKRI), and the Royal Society. Richard Friend is a Fellow of St John’s College, Cambridge.

 

Reference:
Sebastian Gorgon et al. ‘Reversible spin-optical interface in luminescent organic radicals.’ Nature (2023). DOI: 10.1038/s41586-023-06222-1

Researchers have found a way to control the interaction of light and quantum ‘spin’ in organic semiconductors, that works even at room temperature.

These new materials hold great promise for completely new applications, since we’ve been able to remove the need for ultra-cold temperaturesSebastian GorgonSebastian GorgonArtist's impression of aligned spins in an organic semiconductor


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified.  All rights reserved. We make our image and video content available in a number of ways – as here, on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

Webb sees carbon-rich dust grains in the first billion years of cosmic time

Wed, 19/07/2023 - 16:00

Similar observational signatures have been observed in the much more recent universe, and have been attributed to complex, carbon-based molecules known as polycyclic aromatic hydrocarbons (PAHs). It is not thought likely, however, that PAHs would have developed within the first billion years of cosmic time.

The international team, including researchers from the University of Cambridge, say that Webb may have observed a different species of carbon-based molecule: possibly minuscule graphite- or diamond-like grains produced by the earliest stars or supernovas. Their results, which suggest that infant galaxies in the early universe developed much faster than anticipated, are reported in the journal Nature.

The seemingly empty spaces in our universe are in reality often not empty at all, but are filled by clouds of gas and cosmic dust. This dust consists of grains of various sizes and compositions that are formed and ejected into space in a variety of ways, including by supernova events.

This material is crucial to the evolution of the universe, as dust clouds ultimately form the birthplaces for new stars and planets. However, the dust absorbs stellar light at certain wavelengths, making some regions of space challenging to observe.

An upside is that certain molecules will consistently absorb or otherwise interact with specific wavelengths of light. This means that astronomers can get information about the cosmic dust’s composition by observing the wavelengths of light that it blocks.

The Cambridge-led team of astronomers used this technique, combined with Webb’s extraordinary sensitivity, to detect the presence of carbon-rich dust grains only a billion years after the birth of the universe.

“Carbon-rich dust grains can be particularly efficient at absorbing ultraviolet light with a wavelength around 217.5 nanometres, which for the first time we have directly observed in the spectra of very early galaxies,” said lead author Dr Joris Witstok from Cambridge’s Kavli Institute for Cosmology.

This 217.5-nanometre feature has previously been observed in the much more recent and local Universe, including within our own Milky Way galaxy, and has been attributed to two different types of carbon-based molecules: polycyclic aromatic hydrocarbons (PAHs) or nano-sized graphitic grains.

According to most models, it should take several hundreds of millions of years before PAHs form, so it would be surprising if the team had observed the chemical signature of molecules that shouldn’t have formed yet. However, according to the researchers, this result is the earliest and most distant direct signature for this carbon-rich dust grain.

The answer may lie in the details of what was observed. The feature observed by the team peaked at 226.3 nanometres, not the 217.5-nanometre wavelength associated with PAHs and tiny graphitic grains. A discrepancy of less than ten nanometres could be accounted for by measurement error. Equally, it could also indicate a difference in the composition of the early universe cosmic dust mixture that the team detected.

“This slight shift in wavelength of where the absorption is strongest suggests we may be seeing a different mix of grains, for example, graphite- or diamond-like grains,” said Witstok, who is also a Postdoctoral Research Associate at Sidney Sussex College. “This could also potentially be produced on short timescales by Wolf-Rayet stars or by material ejected from a supernova.”

Models have previously suggested that nano-diamonds could be formed in the material ejected from supernovas; and huge, hot Wolf-Rayet stars, which live fast and die young, would give enough time for generations of stars to have been born, lived, and died, to distribute carbon-rich grains into the surrounding cosmic dust in under a billion years.

However, it is still a challenge to fully explain these results with the existing understanding of the early formation of cosmic dust. These results will go on to inform the development of improved models and future observations.

With the advent of Webb, astronomers are now able to make detailed observations of the light from individual dwarf galaxies, seen in the first billion years of cosmic time. Webb finally permits the study of the origin of cosmic dust and its role in the crucial first stages of galaxy evolution.

“This discovery was made possible by the unparalleled sensitivity improvement in near-infrared spectroscopy provided by Webb, and specifically its Near-Infrared Spectrograph (NIRSpec),” said co-author Professor Roberto Maiolino, who is based in the Cavendish Laboratory and the Kavli Institute for Cosmology. “The increase in sensitivity provided by Webb is equivalent, in the visible, to instantaneously upgrading Galileo’s 37-millimetre telescope to the 8-metre Very Large Telescope, one of the most powerful modern optical telescopes.”

The team is planning further research into the data and this result. “We are planning to work with theorists who model dust production and growth in galaxies,” said co-author Irene Shivaei of the University of Arizona/Centro de Astrobiología (CAB). “This will shed light on the origin of dust and heavy elements in the early universe.”

These observations were made as part of the JWST Advanced Deep Extragalactic Survey, or JADES. This programme has facilitated the discovery of hundreds of galaxies that existed when the universe was less than 600 million years old, including some of the farthest galaxies known to date.

“I’ve studied galaxies in the first billion years of cosmic time my entire career and never did we expect to find such a clear signature of cosmic dust in such distant galaxies,” said co-author Dr Renske Smit from Liverpool John Moores University. “The ultradeep data from JWST is showing us that grains made up of diamond-like dust can form in the most primordial of systems. This is completely overthrowing models of dust formation and opening up a whole new way of studying the chemical enrichment of the very first galaxies.”

Webb is an international partnership between NASA, ESA and the Canadian Space Agency (CSA). This research was supported in part by the Science and Technology Facilities Council (STFC), part of UK Research and Innovation (UKRI).

Reference:
Joris Witstok et al. ‘Carbonaceous dust grains seen in the first billion years of cosmic time.’ Nature (2023). DOI: 10.1038/s41586-023-06413-w

Adapted from an ESA press release.

For the first time, the James Webb Space Telescope has observed the chemical signature of carbon-rich dust grains in the early universe.

ESA/Webb, NASA, ESA, CSAGalaxy JADES-GS-z6 in the GOODS-S field: JADES (NIRCam image)


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified.  All rights reserved. We make our image and video content available in a number of ways – as here, on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

YesLicence type: Public Domain