skip to content

Department of Physics

The Cavendish Laboratory
 

This series of colloquia in the Cavendish Laboratory aims to cover all aspects of modern quantum many-body physics. It is broadly aligned with our research themes on Theoretical Condensed Matter PhysicsFundamental Physics of Quantum MatterApplied Quantum Physics and DevicesSynthetic Quantum SystemsQuantum Information and Control, and Energy Materials

As such, it features talks on both fundamental many-body physics as well as their exploitation in devices, covering all aspects of quantum phenomena in condensed matter and synthetic many-body systems, and their theoretical description.

The aim for these colloquia is to be accessible to a wider audience compared to a typical group seminar, and everyone is most welcome to attend them!

Click below to see details of the upcoming and previous talks. Please check this page regularly to keep informed as speakers are confirmed and details of their talks are added to the list.


Upcoming talks:

1 May 2024 @16:00: Prof Claudia Felser (Max Planck Institute for Chemical Physics of Solids)

Prof Claudia Felser (Max Planck Institute for Chemical Physics of Solids): Chirality and Topology

Venue: Small Lecture Theatre

Chirality is a very active field of research in organic chemistry, closely linked to the concept of symmetry. Topology, a well-established concept in mathematics, has nowadays become essential to describe condensed matter [1,2]. At its core are chiral electron states on the bulk, surfaces and edges of the condensed matter systems, in which spin and momentum of the electrons are locked parallel or anti-parallel to each other. Magnetic and non-magnetic Weyl semimetals, for example, exhibit chiral bulk states that have enabled the realization of predictions from high energy and astrophysics involving the chiral quantum number, such as the chiral anomaly, the mixed axial-gravitational anomaly and axions [3-5]. Chiral topological crystals exhibit excellent chiral surface states [6,7] and different orbital angular momentum for the enantiomers, which can be advantageous in catalysis. The potential for connecting chirality as a quantum number to other chiral phenomena across different areas of science, including the asymmetry of matter and antimatter and the homochirality of life, brings topological materials to the fore [8].

References:

[1] M. G. Vergniory, B. J. Wieder, L. Elcoro, S. S. P. Parkin, C. Felser, B. A. Bernevig, N. Regnault, Science 2022, 376, 6595.

[2] P. Narang, C. A. C. Gracia and C. Felser, Nat. Mater. 2021, 20, 293.

[3] J. Gooth et al., Nature 2017, 547, 324.

[4] J. Gooth et al., Nature 2019, 575, 315.

[5] D. M. Nenno, et al., Nat Rev Phys 2022, 2, 682.

[6] B. Bradlyn, J. Cano, Z. Wang, M. G. Vergniory, C. Felser, R. J. Cava and B. A. Bernevig, Science 2016, 353, aaf5037.

[7] N. B. M Schröter, et al., Science 2020, 369, 179.

[8] C. Felser, J. Gooth, preprint arXiv:2205.05809

15 May 2024 @16:00: Prof Jean Dalibard (Collège de France, Kaster Brossel Laboratory)

Prof Jean Dalibard (Collège de France, Kaster Brossel Laboratory)

Venue: Small Lecture Theatre

Title and abstract coming soon. 

 

22 May 2024 @16:00: Prof Monika Schleier-Smith (Stanford University)

Prof Monika Schleier-Smith (Stanford University)

Venue: Small Lecture Theatre

Title and abstract coming soon.