skip to primary navigationskip to content
 

Prof. Malte Grosche

Prof. Malte Grosche

Professor of Condensed Matter Physics

Fellow of Trinity College

Room 501 Mott Building
Cavendish Laboratory
JJ Thomson Avenue

Cambridge CB3 0HE
Office Phone: +44 (0)1223 337392

Biography:

Professor Malte Grosche has rejoined the Cavendish in 2007, after six years as a lecturer and reader at Royal Holloway, University of London (2001-2007) and three years (1998-2001) as a postdoc at the Max-Planck-Institute for Chemical Physics of Solids in Dresden. He started out as a Cambridge undergraduate, PhD student at the Cavendish (1991-95) and Trinity College Title A fellow (1994-97).  

Research groups

Quantum Matter:

Research Interests

Prof. Grosche's group investigate correlated states in quantum materials. Three recent research topics illustrate the nature of this work: 

(i) the group uncovered a new mechanism for boosting superconductivity in aperiodic materials such as high-pressure bismuth, which because of its incommensurate crystal structure lacks a unit cell. This causes a low energy sliding mode to arise, which has profound consequences for both superconducting and normal state properties.

(ii) the group have discovered the first unconventional superconductor among layered iron compounds outside the known pnictide and chalcogenide families, YFe2Ge2, in Cambridge-grown crystals of world-leading quality. This finding significantly widens the small group of unconventional superconductors in transition metal compounds and can improve our understanding of high temperature superconductivity in iron pnictide materials. 

(iii) the group have combined high precision measurements of the Fermi surface with high pressure techniques, allowing us to determine for the first time the Fermi surface of an inorganic Mott insulator metallised by applied pressure, NiS2. This work  combines low temperatures in the milli-Kelvin regime, Cambridge-grown high-quality single crystals, pressures of up to 120,000 atmospheres, ultra-high magnetic fields, and a sophisticated radio-frequency resonance technique. Its success opens the door for new research into the electronic structure at pressure-tuned quantum phase transitions in many materials of intense scientific interest, including Mott, Kondo and topological insulators, f- and d-electron systems with ultra-narrow electronic bands and correlated semimetals.

Work is organised around the strengths of the Quantum Matter group: (i) growing high purity crystals of challenging materials, (ii) multiprobe measurements at extreme conditions of low temperatures, high magnetic fields and high pressure, and (iii) world-class expertise in electronic structure determination using quantum oscillatory phenomena. The research is underpinned by modern and comprehensive equipment, which covers the entire spectrum from crystal growth and characterisation to high pressure measurements in high magnetic fields and at low temperature.

 

Keywords

  • Experimental condensed matter physics
  • Quantum materials
  • Emergent Quantum Phenomena
  • Superconductivity

Key Publications

  1. Ultrasmall moment incommensurate spin density wave order masking a ferromagnetic quantum critical point in NbFe2, P. G. Niklowitz, M. Hirschberger, M. Lucas, P. Cermak, A. Schneidewind, E. Faulhaber, J.-M. Mignot, W. J. Duncan, A. Neubauer, C. Pfleiderer, F. M. Grosche, Phys. Rev. Lett. 123, 247203 (2019). 
  2. Strong coupling superconductivity in a quasiperiodic host-guest structure, P. Brown, K. Semeniuk, D. Wang, B. Monserrat, C. J. Pickard, F. M. Grosche, Science Advances 4, eaao4793 (2018).
  3. Quantum tricritical points in NbFe2S. Friedemann, W. J. Duncan, M. Hirschberger, T. W. Bauer, R. Kuechler, A. Neubauer, M. Brando, C. Pfleiderer, F. M. Grosche, Nature Physics 14,62–67 (2018).
  4. Unconventional superconductivity in the layered iron germanide YFe2Ge2J. Chen, K. Semeniuk, Z. Feng, P. Reiss, Y. Zou, P. W. Logg, G. I. Lampronti, F. M. Grosche, Phys. Rev. Lett.116,127001 (2016).
  5. Ambient pressure structural quantum critical point in the phase diagram of (CaxSr1-x)3Rh4Sn13S. K. Goh, D. A. Tompsett, P. J. Saines, H. C. Chang, T. Matsumoto, M. Imai, K. Yoshimura, F. M. Grosche, Phys. Rev. Lett. 114,097002, 5 p. (2015).
  6.  Pressure- and Composition-Induced Structural Quantum Phase Transition in the Cubic Superconductor (Sr,Ca)3Ir4Sn13L. E. Klintberg, S. K. Goh, P. L. Alireza, D. A. Tompsett, J. Yang, B. Chen, K. Yoshimura, and F. M. Grosche,Physical Review Letters109,237008(2012).
  7. Observation of two distinct superconducting phases in CeCu2Si2,H. Q. Yuan, F. M. Grosche, M. Deppe, C. Geibel, G. Sparn and F. Steglich, Science 302(5653), 2104-2107 (2003).
  8. Superconductivity on the border of itinerant-electron ferromagnetism in UGe2, S. S. Saxena, P. Agarwal, K. Ahilan, F. M. Grosche, R. K. W. Haselwimmer, I. R. Walker, E. Pugh, M. J. Steiner, S. R. Julian, A. Huxley, J. Flouquet and G. G. Lonzarich, Nature 406, 587 (2000). 
  9. Magnetically mediated superconductivity in heavy fermion compounds, N. D. Mathur, F. M. Grosche, S. R. Julian and G. G. Lonzarich, Nature 394, 39 (1998).

 

Please visit the personal website for a full list of publications.