High Energy Physics

Val Gibson

Beyond the Standard Model

Standard Model is an approximate theory

- Higgs sector is "unnatural" (hierarchy problem)
- Neutrino mass is not explained
- Too many free parameters (20 out of a total of 25 from the flavour sector)
- No unification of 4 forces
- No explanation of dark matter, dark energy
- There must be more "CP violation" for observed matter-antimatter asymmetry

HEP Priorities

Scientific priorities follow the 4 recommendations from the "European Strategy for Particle Physics" (2013) for accelerator-based activities (& STFC).

- Exploitation of the full-potential of the LHC.
- Major participation in a long base-line neutrino programme.
- High-energy frontier, post-LHC, CERN accelerator.
- International Linear Collider for high-precision studies.

"European Strategy for Particle Physics" Update May 2020

Neutrinos (MicroBooNE/DUNE)

Impact: outreach, comp radiotherapy, security

6/4/2018

Instrumentation **Impact:** outreach, comp radiotherapy, security Ed Flaherty (E) Bart Hommels (STO) Philip Garsed (E) Val Gibson **Steve Wotton** Rich Shaw (T) **Bart Hommels** Dave Robinson Andy Parker **Frederic Brochu** Saevar Sigurdsson (T) **Karl Harrison** Steve Wotton 3 PhD students

The Large Hadron Collider

6/4/2018

CMS

Cavendish Strategy Forum

¹⁰ 2/57

Large Hadron Collider

ATLAS: Standard Model

Batley et al

Precision measurements of the Standard Model Higgs and others.... no surprises

ATLAS BSM Lester, Parker, Potter et al

SUSY, extra dimensions... as LHC runs continue, we push to improve sensitivity to difficult/rare/high mass scenarios (compressed mass spectra, low cross-section, SM-like...).

LHCb: CP Violation Gibson et al

LHCb: Rare B Decays

Bettler, Gibson et al

 $B_s \rightarrow \mu^+\mu^-$ is a golden place to search for New Physics! Expect one B_s to decay into 2 muons once every 3.7 billion decays (1 every 2 trillion pp collisions at LHCb).

LHCb: Rare B Decays

Bettler, Gibson et al

 $B_s \rightarrow \mu^+\mu^-$ is a golden place to search for New Physics! Expect one B_s to decay into 2 muons once every 3.7 billion decays (1 every 2 trillion pp collisions at LHCb).

LHCb: Intriguing Anomalies Gibson et al SM predicts that the W boson should interact with electrons, muons and tau leptons the same (lepton universality).

e-μ Lepton Non-Universality ??

Cavendish Strategy Forum

LHCb: Intriguing Anomalies

$$R(J/\psi) = \frac{B(B_c^+ \rightarrow J/\psi \tau^+ \nu_{\tau})}{B(B_c^+ \rightarrow J/\psi \mu^+ \nu_{\mu})}$$

$\mu - \tau$ Lepton Non-Universality ??

HEP Theory

Centre for Precision Studies: Alex Mitov

Focus on top quark production

HEP Theory

Centre for Precision Studies: Alex Mitov

Focus on top quark production

Most precise calculation of top pair production

Uncertainty on gluon parton distribution function

HEP Theory

Centre for Precision Studies: Alex Mitov

Focus on top quark production

Beyond Standard Model: Ben Gripaios

- Motivations as strong as ever
- LHC legacy: what will next-generation theorists wish had been measured?
- Lepton Flavour Universality & B-decay anomalies
- What is dark matter (underground/overground, gravity waves, thermal relic v, hidden sector)?

Unique collaboration of HEP experiment-theory (Cavendish + DAMTP): Cambridge SUSY Working Group.

Instrumentation

Lester, Gibson, Wotton et al

Fast readout electronics & DAQ

- ATLAS and LHCb off-detector electronics modules.
- ATLAS upgrade: Level-1 ECAL trigger electronics LS2 (2019)
- LHCb upgrade: RICH on-detector electronics
 LS2 (2019)

Instrumentation

Hommels, Robinson et al

Silicon strip detectors

- ATLAS SCT modules.
- ATLAS upgrade ITk: Si module building and QA LS3 (2024)

Need build >1000 10cm x 10xm silicon modules for ATLAS ITk and test sensors.

Instrumentation (future)

- Fast Readout Electronics & DAQ
 - Fast digital readout of large arrays.
 - Timing in RICH detectors.
- Silicon Detectors
 - CMOS technology (requires CMOS engineer)
 - Build-up niche capabilities e.g. radiation effects on silicon sensors, power delivery systems (silicon carbide)
- Generic Detector R&D
 - Novel detector technology
 e.g. Photonic crystals to detect
 Cherenkov radiation

LS3/4 LHCb Upgrade 1b/II

Neutrinos

Thomson et al

Neutrino masses are currently the only firm evidence of BSM physics

• Rich experimental programme utilizing LAr-TPCs

Cambridge at forefront of development of image recognition and pattern recognition for global neutrino programme

- MicroBooNE (2015 2021?)
 - Search for sterile neutrinos MiniBooNE anomaly
- ProtoDUNE (2018-2020?)
 - Massive LAr-TPC prototypes for DUNE at CERN
- DUNE (2026-2040)
 - The world's first mega-science neutrino project
 - Until recently, Cambridge leadership 2018 Cavendish Strategy Forum

6/4/2018

Future Opportunities Parker, Thomson et al

Future Circular Collider (CERN)

- 100 TeV, 80-100 km pp (ee or ep)
- Low Higgs mass "unnatural" need to fully explore EWSB.
- Regular International meetings (e.g. FCC).

International Linear Collider (Japan)

- 250/500 TeV Higgs factory (ee)
- Detector & physics studies (CALICE)
- Opportunity for Si-based ECAL using CMOS technology

HEP Strategic View

- Full exploitation of LHC (ATLAS & LHCb and upgrades)
- Neutrinos (DUNE)
 - £65M investment from UK government
 - UK will construct major parts of the DUNE detector and associated neutrino beam, first data 2026
 - Cambridge is in a strong position to tap into this opportunity
 - Potential for a strategic investment

 $now \rightarrow 2035$

2019 → **2040**

HEP Strategic View

- Full exploitation of LHC (ATLAS & LHCb and upgrades) ightarrow
- Neutrinos (DUNE)
 - £65M investment from UK government
 - UK will construct major parts of the DUNE detector and associated neutrino beam, first data 2026
 - Cambridge is in a strong position to tap into this opportunity
 - Potential for a strategic investment
- Centre for Instrumentation (Cavendish III)
- Enhance HEP theory in-line with experiment ightarrow
- Dark Matter (accelerator vs direct dark matter detection: Xenon1T, lacksquareDarkside etc)
- Particle Astrophysics projects (LSST, CTA etc). 6/4/2018

2022 →

 $now \rightarrow 2035$

 $2019 \rightarrow 2040$

General considerations

Instrumentation

- Attractive career path for key engineers independent from grant income
- Centre for Instrumentation (Cavendish III)

Computing and Software

- Expertise in BigData computing and software & using Grid
- RICH pat rec, particle flow, jet finding
- Attractive "Data Intensive Science" CDT studentships

Summary

The HEP experiment and theory research group has a world-class (& high-priority STFC) science programme, with an innovative and collaborative vision for the future.

Major opportunities with new appointments:

- LHC exploitation Lecturer
- Neutrinos (DUNE) detector readout software & DAQ Lecturer
- Dark Matter (direct detection) initiative

Senior strategic appointment STO or equiv. The Deep Underground Neutrino Experiment DUNE:

- Large underground Liquid Argon Time Projection Chamber
 Four 17,000 ton LAr-TPCs, one mile underground
- Fire neutrinos 800 miles from Fermilab to South Dakota
- Aiming for first beam in 2026
- Targeting major discoveries: leptonic CPV, proton decay, SN vs

LHC schedule beyond LS1

- LS2 starting in 2018 (July)
- LS3 LHC: starting in 2023 Injectors: in 2024
- => 18 months + 3 months BC
- => 30 months + 3 months BC
- => 13 months + 3 months BC

technical coordinators (Decentionered dist) Strategy Forum

LHCb Experiment

Discovery of tetraquarks, pentaquarks

