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SECTION A
Answers should be concise and relevant formulae may be assumed without

proof.

1 State the form of the wavefunction for an electron in a crystal. What is meant by
the crystal momentum of the electron and how does it differ from the true momentum of
the electron? [4]

2 Give a brief explanation of the concepts of drift velocity, electron mobility, and
effective mass, as used in solid state physics. [4]

3 Consider the Stoner instability of free conduction electrons of total density
n = n↑ + n↓ in a metal with Fermi energy EF and density of states g(ε). Electrons of
opposite spin interact via a short-range repulsive interaction U, giving rise to a total
interaction energy of EIA = Un↑n↓. Derive an expression for the critical value Uc of the
interaction, above which a ferromagnetic state has a lower energy compared to an
unpolarised state with n↑ = n↓. [4]

4 The picture below shows an ARPES measurement of a doped graphene sample.
Describe how one can extract the Fermi energy and Fermi velocity from this
measurement and obtain approximate values. [4]
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SECTION B

5 This question is about the optical response of insulators and simple metals. We will start
with insulating materials, where bound electrons respond to an optical light field
E = E0e−iωt according to the Lorentz model.

(a) State the relevant differential equation for the oscillating displacement
u(t) = u0e−iωt considering a single atomic transition of frequency ω0 and explain
the physical origin of all the terms. [3]

(b) Show that this differential equation gives rise to the following
frequency-dependent permittivity,

εω = 1 + n
q2

mε0(ω2
0 − ω

2 − iωγ)
,

where m and q denote the mass and charge of the electron, ε0 is the vacuum
permittivity, n the density of electrons, and γ is a phenomenological damping rate. [5]

(c) Sketch the real and imaginary parts of the permittivity and discuss their
physical significance in the case of a weakly absorbing medium. [3]

(d) Repeat the above sketch for the case of several atomic transitions and discuss
the connection to normal and anomalous dispersion in optics. [3]

From here on, consider the situation of a simple metal where the conduction electrons
can be seen as free electrons.

(e) Discuss how the model above needs to be modified for simple metals and
sketch the resulting permittivity. [3]
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6 Start by considering a homogeneous bulk semiconductor in three dimensions. Assume
that the dispersion relations for electrons in the conduction band and holes in the valence
band are given by

εc(k) = εc +
~2k2

2m∗e
and εv(k) = εv −

~2k2

2m∗h
.

(a) Show that the densities of states for those bands per unit volume are given by [4]

ge(ε) =
1

2π2

(
2m∗e
~2

)3/2

(ε − εc)1/2 and gh(ε) =
1

2π2

(
2m∗h
~2

)3/2

(εv − ε)1/2.

(b) Use the above results to show the law of mass action, i.e., show that the
product of intrinsic carrier concentrations n2

i = n p is given by

n2
i =

1
2

(m∗em∗h)3/2
(
kBT
π~2

)3

exp
(
−
εc − εv

kBT

)
,

where n (p) denotes the density of electrons (holes). You can assume the
semiconductor to be non-degenerate, i.e., the Fermi distribution can be
approximated to f (ε) ≈ exp

(
−
ε−µ

kBT

)
. [5]

(c) Discuss why semiconductor devices can operate only in a limited temperature
regime. [3]

(d) Sketch the current through a pn junction as a function of applied voltage and
discuss how the temperature dependence of n2

i calculated above can be extracted
from such measurements. [3]

(e) Discuss why the Hall coefficient can change sign as a function of temperature
in doped semiconductors. [2]You might find the following integrals useful:

∫ ∞
0

√
xe−xdx =

√
π/2,

∫ ∞
0

x2e−x2
dx =

√
π/4.


END OF PAPER
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